
www.phparch.com November 2013
VOLUME 12 - ISSUE 11

Functional Testing in
Symfony 2

Interoperability:
The Future of PHP

Laravel -
A Modern PHP Framework

Adianti Framework

ALSO INSIDE

Editorial:
Time to Play

Education Station:
Satis for Package

Deployment Simplicity

The Confident Coder:
Episode 2: Descriptive

Naming Schemes

finally{}
Making Friends

Frameworks

42 | November 2013 phparch.com

FEATURE

Adianti
Framework

Pablo Dall’Oglio

Adianti Framework provides a
complete architecture for developing
PHP applications. It is a component-
based and event-driven framework
specializing in the development of
business applications. In this paper, I’ll
introduce you to the basic concepts of
the framework.

DisplayInfo()

Related URLs:
• Adianti Framework –

http://www.adianti.com/framework

• Adianti Studio –
http://www.adianti.com/studio

• Framework Quick Start -
http://adianti.com/framework-quickstart

 phparch.com November 2013 | 43

Persistence

The framework persistence layer is built around

the Active Record and Repository Design Patterns.

To start everything, we must declare a subclass of

TRecord, that is an Active Record implementation

that provides methods like store(), delete(),

load(), and others. In the following sample,

there’s the Customer class, that is an Active

Record. All Active Records must use a single

primary key. Adianti Studio Pro can automatically

generate methods to deal with relationships like

compositions, associations, and aggregations

inside the Active Records. Suppose Customer has

a composition with the Contacts class. This way,

when loading or storing a Customer Active Record,

also its Contact information (composed objects)

will be handled in this operation.

class Customer extends TRecord
{
 const TABLENAME = 'customer';
 const PRIMARYKEY= 'id';
 const IDPOLICY = 'max';
 // {max, serial}
}

Introduction

As you know, a framework is an abstraction which provides generic
functionality that can be extended by developers when building specific
applications. Most people use frameworks to be more productive in
software development and to spend time meeting software requirements,
not to deal with low-level aspects like persistence and presentation.

As a developer, I was lucky enough to start using PHP back in 2000. At that time, the
team I worked with had created an entire academic ERP system (called SAGU) in PHP 4. A
year later (2001), Rasmus Lerdorf came to Brazil for a Free Software conference. Rasmus
told us that SAGU was the biggest PHP system in the southern hemisphere at that time.
The team was young and did not know much about good architecture practices. The
source code was entirely procedural. The system fulfilled the user needs, but the team
was not proud of that code, and maintenance was painful.

As time passed, I learned a lot about architecture and design patterns. PHP improved a lot

with PHP 5 in 2004, and yet by 2006, frameworks for PHP development were just gaining

traction, so I started to write a new one focused on the development of business applications,

like the old academic ERP system. The development of this kind of system required certain

features: a fixed set of components to build standard interfaces, because the system must

be homogeneous; a good persistence layer to let developers worry about business rules,

not about SQL statements; easy to learn technology, because you will have a heterogeneous

group of high skilled developers and also less skilled ones, and everyone must be able to

write clean code.

These requirements guided me in the development of the Adianti Framework, and the main

points of the framework are the development of business applications and the ease to learn.

You don’t have to learn a couple of technologies like JavaScript, jQuery, and others to start

developing, just PHP. That’s because the framework has a couple of PHP components that

encapsulate different technologies, like jQuery and Twitter bootstrap, so it reduces the need

to integrate different technologies to start developing. For those that would like even more

productivity, there’s also Adianti Studio Pro, an IDE that provides wizards for datagrids and

automatic form generation, beyond an interface designer.

 phparch.com November 2013 | 43

44 | November 2013 phparch.com

AdiAnti FrAmework

The implementation of database operations leverages the PDO library. It uses transactions

and exception handling by default. We can stack transactions and also log all of the automatic

operations done by the framework persistence layer. In the following sample, we are using the

Customer class, which is a subclass of TRecord, to load a customer (31) and change one of its

attributes. The framework maps the attributes automatically to the database columns. We can

restrict which attributes we want to map.

TTransaction::open('samples'); // open transaction
$customer = new Customer(31);
$customer->phone = '51 8111-3333'; // changes the phone
$customer->store(); // stores the object
new TMessage('info', 'Object updated');
TTransaction::close(); // closes transaction

To deal with collections, we can use the

Repository pattern (TRepository class).

This class deals with collections of objects.

The TRepository class uses a criteria object

(TCriteria) that is an implementation of the

Composite Pattern. This way, we can create

composite filters. In Listing 1, we are loading

all customers of female gender and showing

some data.

Page Controllers

All the application pages made with the Adianti Framework must be subclasses of TPage or

TWindow. The only difference is that TWindow opens over the application in a separate window.

The page content is added to the page itself using object composition. The framework offers

a group of containers and widgets to build the application interface. In this sample, we are

creating a simple page with a label inside. In the web environment, the application flow is

implemented using the Front Controller Pattern. To render a class, you must enter: index.
php?class=SimpleView, for instance.

class SimpleView extends TPage
{
 public function __construct()
 {
 parent::__construct();
 parent::add(new TLabel('Hello World'));
 }
}

This sample demonstrates how to run specific methods. In this case, we must specify the

class name, the method to be executed, and any additional parameters in the URL: index.
php?class=SimpleView&method=onHello&name=Pablo. This way, the method onHello()
from the SimpleView class will be executed. The onHello() method will receive a parameter

($param in this case), that will contain the request ($_REQUEST) for this call.

LISTING 1

 1. TTransaction::open(‘samples’); // opens a transaction
 2. $criteria = new TCriteria;
 3. $criteria->add(new TFilter(‘gender’, ‘=’, ‘F’));
 4. $repository = new TRepository(‘Customer’);
 5. $customers = $repository->load($criteria);
 6. foreach ($customers as $customer)
 7. {
 8. echo $customer->id . ‘ - ‘ . $customer->name . ‘
’;
 9. }
10. TTransaction::close(); // closes the transaction

AdiAnti FrAmework

 phparch.com November 2013 | 45

class SimpleView extends TPage
{
 public function onHello($param)
 {
 parent::add(new TLabel('Hello ' . $param['name']));
 }
}

The framework also offers an implementation of the Template View pattern. In this

case, we can use HTML fragments to compose the interface. The THtmlRenderer
class takes in HTML and allows us to add this HTML inside a page. The

THtmlRenderer class also allows the developer to perform some operations like:

enabling or disabling HTML sections; replacing HTML variables with static content

or with framework widgets; and repeating HTML sections. In Listing 2, we are just

enabling a section and replacing some variables with static content.

Containers

The framework offers some containers to build the application pages. In this

sample, we can realize objects like TNotebook, TTable, and TPanel that are

containers used to build the interface. The

interesting part of this approach is that you

can run your application both as a default

web application and also as a desktop

application. The Adianti Framework provides

two implementations: one that uses web

technologies like jQuery and another one that

uses the GTK library for the desktop. We can put

containers inside containers (as shown in Listing

3) and also use the Template View to build the

interface under the web.

In Figure 1, we can see this container.

FIGURE 1 LISTING 3

 1. class ContainerNotebookView extends TPage
 2. {
 3. function __construct()
 4. {
 5. parent::__construct();
 6.
 7. // creates the notebook
 8. $notebook = new TNotebook(400,200);
 9.
10. // creates the containers for each notebook page
11. $page1 = new TTable;
12. $page2 = new TPanel(370,180);
13. $page3 = new TTable;
14. // adds two pages in the notebook
15. $notebook->appendPage(‘Basic data’, $page1);
16. $notebook->appendPage(‘Other data’, $page2);
17. $notebook->appendPage(‘Other note’, $page3);
18. parent::add($notebook);
19. }
20. }

LISTING 2

 1. class TemplateView extends TPage
 2. {
 3. public function __construct()
 4. {
 5. parent::__construct();
 6. $replace = [‘code’ =>1, ‘name’=> ‘Mary’];
 7. $html = new THtmlRenderer(‘app/resources/customer.html’);
 8. $html->enableSection(‘main’, $replace);
 9. parent::add($html);
10. }
11. }

46 | November 2013 phparch.com

AdiAnti FrAmework

rich Widgets

The framework offers lots of widgets to

build forms. To arrange these widgets on

the screen, we can use a table container

to display the elements in rows and

columns, but we can also use a panel

container, displaying the elements

in absolute coordinates. As you can

see, there are many ways to build an

application form, but the simplest way

is to use the TQuickForm class, placing

one component above the other. In

Listing 4, we are creating a form and adding some input components inside of it. There is also an

action button (Save) that is connected to the onSave() callback. We could also wrap this form

inside a notebook or another container. The framework provides many kinds of components to

use inside a form like TEntry (text input), TDate (date picker), TPassword (password entry),

TSpinner, and TSlider, among others.

In Figure 2, we can see the form in action.

The form action is represented by an object of TAction class. This class encapsulates a PHP

callback. In the following code, we can see the onSave() method that is executed when the user

clicks on the save button of the form. In this case, the form data is collected by the getData()
method which returns an object with the form data. In this case, we are just showing some

information using the default message dialog (TMessage).

public function onSave($param)
{
 $data = $this->form->getData();
 $message = 'Id: ' . $data->id . '
';
 $message.= 'Description: ' . $data->description . '
';
 $message.= 'Date: ' . $data->date . '
';
 $message.= 'List: ' . $data->list . '
';
 $message.= 'Text: ' . $data->text . '
';
 new TMessage('info', $message);
}

LISTING 4

 1. class TestView extends TPage
 2. {
 3. private $form;
 4. function __construct()
 5. {
 6. parent::__construct();
 7. $this->form = new TQuickForm;
 8.
 9. $id = new TEntry(‘id’);
10. $description = new TEntry(‘description’);
11. $password = new TPassword(‘password’);
12. $date = new TDate(‘date’);
13. $list = new TCombo(‘list’);
14. $text = new TText(‘text’);
15. $spinner = new TSpinner(‘spinner’);
16. $slider = new TSlider(‘slider’);
17. $spinner->setRange(0,100,10);
18. $slider->setRange(0,100,10);
19. $list->addItems(array(‘a’=>’Item a’, ‘b’=>’Item b’));
20.
21. $this->form->addQuickField(‘Id’, $id, 40);
22. $this->form->addQuickField(‘Description’, $description, 200);
23. $this->form->addQuickField(‘Password’, $password, 200);
24. $this->form->addQuickField(‘Date’, $date, 100);
25. $this->form->addQuickField(‘List’, $list, 100);
26. $this->form->addQuickField(‘Text’, $text, 120);
27. $this->form->addQuickField(‘Spinier’, $spinner, 120);
28. $this->form->addQuickField(‘Slider’, $slider, 120);
29. $text->setSize(200,50);
30.
31. $this->form->addQuickAction(‘Save’,
32. new TAction(array($this, ‘onSave’)), ‘ico_save.png’);
33. parent::add($this->form);
34. }
35. }

FIGURE 2

 phparch.com November 2013 | 47

AdiAnti FrAmework

Interface Designer

Some developers love to define interfaces by hand;

others do not. For those who prefer to draw interfaces

using drag and drop, there’s the Adianti Studio

Designer, part of Adianti Studio Pro. With Adianti

Studio Designer, you can draw interfaces which are

stored in XML files. We can take these XML files and

use a framework class called TUIBuilder to render

the application interface. This class will render the

interface both for the web environment and also for

a desktop environment (using the GTK library). The

TUIBuilder class parses the XML file, renders the

interface, and makes the designed objects available

as regular framework objects through methods like

getWidget().

Taking a look at the interface, which is saved in

an XML file, the code in Listing 5 takes this file and

renders it. All the actions defined in the Designer are

automatically mapped to class methods.

LISTING 5

 1. class DesignFormView extends TPage
 2. {
 3. private $form;
 4.
 5. function __construct()
 6. {
 7. parent::__construct();
 8.
 9. $this->form = new TForm;
10.
11. try
12. {
13. $ui = new TUIBuilder(500,300);
14. $ui->setController($this);
15. $ui->setForm($this->form);
16.
17. // reads the xml form
18. $ui->parseFile(‘app/forms/sample.form.xml’);
19.
20. $this->form->add($ui);
21. $this->form->setFields($ui->getFields());
22. }
23. catch (Exception $e)
24. {
25. new TMessage(‘error’, $e->getMessage());
26. }
27.
28. parent::add($this->form);
29. }
30. }

online training

Get up and running fast with

WordPress,

Web Security,

PHP,

& SugarCRM!

php[architect] Training Series

phparch.com/training

php[architect] Training Course

web security

php[architect] Training Series

php[architect] Training Course

essentials

AdiAnti FrAmework

Final Considerations

Adianti Framework is an open source project that is growing quickly in Brazil.
People are recognizing the framework as an easy-to-learn technology, with
ready-to-use components, allowing heterogeneous teams to build quality
business applications. The framework does not intend to be a general purpose
solution. It is probably not the best option to build a blog, a public web page,
or things like that, but it is a great option for building business applications that
run internally inside an organization.

In Figure 3, you can see the Adianti Studio Designer in action. You can build an interface using

native framework containers (TFrame, TNotebook), form components (TEntry, TPassword,

TButton, TDate, TSlider, TSpinner), and also datagrids.

PABLO DALL’OGLIO has created many projects for PHP development (Tulip IDE, Agata Report,

and Adianti Framework). He is active within the Brazil PHP community and is the author of

books on PHP-GTK, PHP Reporting, and Object Orientation in PHP. He also teaches software

engineering to university students.

@pablodalloglio

FIGURE 3

48 | November 2013 phparch.com

